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ABSTRACT 

For any p > l, the existence is shown of Orlicz spaces L e and lr with indices p 
containing singular/P-complemented copies, extending a result of N. Kalton 
([6]). Also the following is proved: Let 1 < a < fl < ~ and H be an arbitrary 
closed subset of  the interval [a, fl]. There exist Odicz sequence spaces l F (resp. 
Orlicz function spaces L r) with indices a and • containing only singular 
lP-complemented copies and such that the set of  values p > 1 for which I p is 
complementably embedded into I r (resp. L e) is exactly the set H (resp. 
H t_) {2}). An explicitly defined class of minimal Orlicz spaces is given. 

Introduction 

The class of m i n i m a l  Orlicz sequence spaces was introduced by J. Linden- 

strauss and L. Tzafriri in ([8], [9]) proving the existence of  reflexive Orlicz 
sequence spaces l e containing no complemented subspaces isomorphic to I p 

for any p >= 1. An extension of  the notion ofminimality to the context of  Orlicz 

function spaces LF(IO was given in [1]. The examples of  minimal Orlicz 

functions F obtained until today have not  been exp l i c i t l y  def ined,  excluding the 

trivial multiplicative ones. Indeed, the existence of  minimal functions is 

proved with the help of  Zorn Lemma and all known examples are obtained, up 

to equivalence, via a sophisticated method by constructing Orlicz functions Fp 

associated with 0-1 valued sequences p = ( p ( n ) )  developed by J. Linden- 

strauss and L. Tzafriri ([8], [9], [10]). 

One of  the purposes of  this paper is to show a concrete class of  minimal 
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Orlicz spaces Lr(/t) ,  where the minimal functions F are explicitly defined in 
terms of elementary functions. (As far as we know these functions are the first 
examples explicitly presented.) 

A second purpose of  this paper is to study the following "inverse problem" 
for singular l P-complemented copies: 

In [6] N. J. Kalton proved the existence of Orlicz sequence spaces I e with 
different indices containing an /P-complemented  copy (for p > 1) and such 
that the function t p does not belong to the set EF, t. In other words, no 
complemented subspace isomorphic to I p in I e is generated by a block basis 
with constant coefficients of  the canonical basis of I e. (In short, we shall say 
that l F has a singular lP-complemented copy.) Thus, the "inverse problem" for 
singular/P-complemented copies can be stated as follows: Given an arbitrary 
set H of real numbers p > 1, find Orlicz sequence spaces I e containing only 
s ingular /P-complemented copies and such that the set of values p > 1 for 
which l p is complementably embedded into l F is exactly the prefixed set H.  

Let us mention that the corresponding inverse problem for "natural" 
I P-complemented copies (i.e. when the functions t P .~EF.I) has previously been 

solved in [3] for arbitrary closed sets H. 
In Section I we show that the class of functions Fp.q(t) = t p exp{qf(log t)}, 

w h e r e f i s  the function f(x)  = Z~-I (1 - COS(rtx/2k)), p > 1 and q arbitrary, is 
minimal.  In particular, we get that the functions Fp,~, p > 1, studied by 
W. Johnson, B. Maurey, G. Shechtman and L. Tzafriri in ([4] Ch. 8) are mini- 
mal. Theorem 1.6 gives a necessary analytic criterion, in terms of  an oscillation 
constant 7y associated with the function f ,  for the embedding of  I p into the 
Orlicz space LP,, as a complemented subspace. Among other consequences, we 
easily deduce (Corollary 1.7) a result due to Lindenstrauss and Tzafriri ob- 
tained by making use of  the method of  0-1 valued sequences: The existence of  
reflexive Orlicz sequence spaces l F with indices p containing no /P-com- 

plemented copy. 
Section II is devoted to singular l p-complemented copies in Orlicz sequence 

spaces I r, answering the "inverse problem" for closed sets (Theorems 2.2 and 
2.3): Given 1 < a < fl < ~ and an arbitrary closed subset H o f t h e  interval [a, fl], 
there exists an Orlicz sequence space IF with indices ae = a and Pe = fl con- 
taining only singular/P-complemented copies and such that the set of  values 
p ' s  for which I p is complementably embedded into l F is exactly the set H. 

In Section III we show the existence of Orlicz function spaces Le(0, 1) 
containing singular In-complemented copies (i.e. tP~k~E?,~), extending the 
above-mentioned result of Kalton ([6] p. 276) for Orlicz sequence spaces: For 
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any p > 1 there exist Odicz function spaces L~(0, 1) having complemented 
subspaces isomorphic to I p and none of  these subspaces is generated by a 
sequence of pairwise disjoint characteristic functions. Previously, to get this, 
we study when the inclusion map between Odicz function spaces is a disjointly 
singular operator (a notion defined below, which is weaker than the strict 
singularity). Finally, as an application, we solve also in this context of Orlicz 
function spaces the "inverse problem" for singular/P-complemented copies 
and arbitrary closed sets (Theorem 3.6). 

Preliminaries 

Given a positive measure space (~, E, g) and an Orlicz function F (i.e. a 
continuous convex non-decreasing function defined for x > 0 so that F(0) = 0 
and F(1) - -1) ,  the Orlicz function space L r ( g )  is defined as the set of 
equivalence classes of  g-measurable scalar functions u of  (f~, Y~, g)  such that 

[ru lr = f F(r[ u [)dg < oo, for some r > 0. 
dt~ 

The space Le(g)  enddwed with the Luxemburg norm 

II u II = in f{ r  > 0 :lu/r[r <-_ 1} 

is a Banach space. We shall consider as measure spaces the (0, 1) and (0, oo) 
intervals with the Lebesgue measure, writing then Le(0, 1) and Lr(0, oo). 
Similarly, the Orlicz sequence space l F consists of  all those sequences u = (u,) 
of scalars for which there is an r > 0 with I ru  lv -- Y¢-  1 F(r I u .  I) < oo. 

We assume that the Orlicz function F satisfies the A2-condition at oo and at 
0, so the associated indices verify 1 < a~ _-< #~ < co and 1 =< oer _-__ fir < ~ (cf. 
[ 10], [ 11 ]). We shall consider the following compact subsets related to F in the 
space of the continuous functions C(0, 1) and in the space C(0, oo) endowed 
with the compact-open topology: 

EF,, iF(r )  r N s , EF = ~>oN EF,,, 

; ,>on 

C~a = convE~a; C~a = cony Epa, 

for every s > O. 
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An Orlicz function F is called minimal at 0 ([8], [9]) if for every function 
G ~EF,1, as a subset of C(0, 1), we have E~,~ = EF,]. The existence of minimal  
functions, different from the t p, is proved by Zorn Lemma. In ([9], [10] p. 164) 
it was proved that there are minimal  Orlicz sequence spaces l x with arbitrary 
indices containing no l p- complemented subspaces for any p > 1. To show this 
J. Lindenstrauss and L. Tzafriri developed a method of constructing Orlicz 
functions Fp associated to a sequence of digits (p(n)) with p(n) equal to 0 or 1, 
and characterizing the minimal functions of the form Fp. 

Minimal Orlicz function spaces L F were introduced in ([1]): An Orlicz 

function F i s  called minimal (at ~ )  if for every function G EEl1 ,  as a subset of  
C(0, oo), we have E~,l = E ~ .  Any minimal Orlicz function space LF(0, 1) 
contains a complemented copy of l v. In ([1], [3]) the existence of minimal 
function spaces LF(O, 1) was proved with arbitrary indices containing no 
l~-complemented copies for any p @ 2. A criterion to insure that reflexive 
Orlicz function spaces LF(0, 1) contain no complemented copies of l p (p ~: 2) 
is that the function t p be strongly non-equivalent to EP, I ([3] Thm. 4). 

We refer to ([10], [11], [12]) for other definitions and terminology used on 
Orlicz and Banach spaces. 

I. An explicitly defined class of minimal Orlicz spaces 

In this section we present an explicit class of Orlicz spaces with the pro- 
perty of being minimal. The motivation for this class is to be found in the 
functions defined by W. Johnson, B. Maurey, G. Schechtman and L. Tzafriri in 
([4], p. 235), F(t) = t p exp( f(log t)}, w h e r e f m e a n s  the function 

f(x) -- ~ (1 - cos (ztxl2k)) 
k--I  

and p > 1. They proved, answering a problem of Mityagin, that the Orlicz 
function spaces LF(O, 1) and LF(O, oo) are isomorphic. 

L~MMA 1.1. Given scalars p > 1 and q arbitrary, the function Fp,q defined 
by Fp.q(O) = 0 and 

Fp,q(t) = tPe q~l°gt), i f t  > 0, 

is equivalent to a convex function and its associated indices are equal to p. 

Furthermore i f  lq [ < ( p - 1)/3rt then Fp,q is itself convex. 
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PROOF. Consider Fp,q =-- F for q ~ 0 (otherwise the result is obvious). We 

know ([4], p. 237) that for every e > 0 there is a constant Ks such that 

(+) If(s + t ) -  f(s)l ~ e l t l  q-Ks 

for all s, t ~ R. Since 

F(st) 

F(s) 
- -  = t p exp{q[f(log s + log t) - f(log s)]}, 

we deduce that for every e > 0 there exists a constant C, > 0 such that for 

every s > 0, 

F(st) 
Czl tv - lq l s  ~ << Cet p+lqls if t >  1, 

F(s) 

a n d i f 0 < t  < 1, 

CT_ltP+elq I ~ F(st) ~ Cetp_lql e 
F(s) 

This implies that F is equivalent to a convex function and with associated 

indices 

Now, if Iql < ( P  - 1)/3n we have that 

and 

I f ' ( x ) l ~  ~ n s i n ~  =<n 
k = l F  

if"(x)l < ~ 7[2 COS 7~.~X_ ~ :~2 2n. 
k 12 ~ ' ~ =  2 ~ = 3  

Thus we get, with H(t) denoting the function qf(log t), that 

F"(t)fl-Pe -rot) = p( p - 1) + (2p - l)qf'(log t) + q2(f'(log t)) 2 + qf"(log t) 

> p ( p - -  1)- - (2p  + 1)lql~z > 0 .  

Therefore F is a convex function q.e.d. 

The following result shows that all functions Fp.q are minimal. In particular 

we get that the Johnson et al. function is minimal. 
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THEOREM 1.2. Given p > 1 and q arbitrary, the Orlicz spaces Lr-( I  z) and 
I t .  are minimal. 

PROOF. Let us show that Fp,q =-- F for q # 0 is minimal at ~ .  (For q = 0 the 

result is obvious.) If G EEp,~ and G is not equivalent to F, there exists a 

sequence (s.)/~ ~ ,  such that 

F(e~.t) 
G(t) = lim = tVe q~°°gt) 

.-oo F(eS.) 

uniformly on the compact subsets of  [0, ~ )  and where g is the function defined 

by 

g(x) = lim (f(s,  + x) - f ( s , ) )  
PI ~ O0 

= lim ~ cos-~T - cos 
n - - o O k .  I 2 k /" 

For each m E N  we can take a scalar O<=s(~ m) ~ 2 m+l such that s(~m)~s, 
(mod 2m+1). SO, there exists a subsequence of ,u,t~(m)~,,_l converging to a 

am E [0, 2 m + I]. Using the Cantor Diagonal method, we obtain a subsequence, 
denoted also by (s.), such that s(~ m) -~ am and 0 _-< am ~ 2 m+l for each m EN.  

Now, by using the Weierstrass criterion on uniform convergence, and an 
iterated limit argument (see e.g. [ 13] p. 198), it results that 

g(x) = lim ~ [ 7tstk) 7t(X + s(~k')] 
- c o s  

_ I , , ( x  + 
- ~cos -~-  - c o s  2k . 

k - I  

If  we consider the sequence (r.) = (2" +1 __ O. n )  we get that 

~ ( (rn + ffk)TC (X + r~ + Ok)n) 
lira (g(r~ + x ) -  g(rn))= lira cos 2k COS 2k 
n ~ o o  n ~ ° °  k - I  

c°L  ] 
---- ~ 1 = f ( x )  

k-I 2 k } 

by using again the Weierstrass criterion and that tr. ~ t rk  (mod 2 k+l)  for any 

n > k .  
T h u s  
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G(e~t) ( ) 
lim = t p l i m e  qIg(r. +l°gt)-g(Q] 
.-~ G(r'.) .-~ 

= t P e  q~l°g t )  = F(t) 

uniformly on compact subsets of [0, oo). So F ~ E ~ : ,  which implies that 
E~,l C E~,l C E~,l. Hence EP, I = E~,l and F is a minimal function at oo. 

Finally, the minimality of the function Fp,q at 0 follows from Proposition 1 
in [1]. q.e.d. 

REMARK 1. From the above proof  it follows that a function G EEP.1 if and 
only if G(t) = t p exp{qg,(log t)}, where g,  is the function 

/ +oO) 
k- I  kCOS " ~ -  -- COS 2k 

and o =(Ok)~-I is a scalar sequence satisfying 0 < Ok < 2  k+l and O,--=Ok 
(rood 2 k+l) for n > k. 

In particular, these functions G are also examples of  explicitly defined 
minimal functions. 

REMARK 2. Fix p > 1; the Orlicz spaces Lr,,(/ t)  and Le,,(lt) are not 
isomorphic for any parameters q ~ r. Indeed, let us suppose that both spaces 
are isomorphic. Then, from Theorem 7.1 in ([4]) we deduce that the functions 
Fp,q and Fp,, are equivalent. But this is not possible since the funct ionf(x)  is not 
bounded at + oo. 

Also it can be shown, by reasoning as in ([4] p. 236), that the Orlicz spaces 
L~',,(0, 1) and Le,,(0, oo) are Riesz-isomorphic for anyp > 1 and q arbitrary. 

We study now the embedding of I p into the spaces Le,~ as complemented 
subspaces. We shall show that inside this class of spaces Le,, there are spaces 
without complemented copies of/P-spaces. In order to show it, we need to 
introduce a slight variant of the notion of strong non-equivalence given by 
Lindenstrauss and Tzafriri ([9], [10] p. 150). 

DEFINITION. Let F be an Odicz function and a scalar o > 0. An Orlicz 
function is called o-strongly non-equivalent to Er,, (resp. EP, I) if there exist two 
sequences of numbers (K,) and integers (m,), with lim K, = oo, m.  = o(Kg), 

and m,- points t~ E (0, 1) such that for every 2 E (0, 1) (resp. 2 U [maxi ti- l, oo)) 
there is at least one index i, 1 < i < m.  for which 
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F ( ; t t i ) _  1 , K n ]  
r(2)G(t,) q:[-~. " 

Given an Orlicz sequence space l e and 0 < a < 1/fV, we can assume w.l.o.g. 

that 

tF'(t) < 1 

F(t) u 

for every t > 0 .  Hence F(st )< sl/'F(t) for every t > 0  and s > 1. Now, 

reasoning as in the proof  of  Theorem 4.b.5. in ([ 10]) we obtain the following 

PROPOSITION 1.3. Let l e be a separable Orlicz sequence space. I f  G is an 
Orlicz function a-strongly non-equivalent to Ee, t for some a < 1~fie, then l ~ is 
not isomorphic to any complemented subspace of  l e. 

For Orlicz function spaces we can use a similar trick to obtain an extension 

o f  Theorem 4 in ([3]). In particular we have 

PROPOSrnON 1.4. Let Le(O, 1) be a reflexive Orlicz function space. I f  t p, 
for p ~ 2, is a-strongly non-equivalent to EP, t for some u < l / f~  , then Le(O, 1) 

does not contain any complemented copy of  l p. 

To apply these results to the class of  minimal  spaces Lv,, we need to con- 

sider an average oscillation constant  ~'I associated with the function f ( x ) =  
X~°_t (1 -- COS(nx/2k)). 

Fix s > O; let us consider  

M,(s) = max [ f ix  + s) - f(s)],  m,(s) = min [f(x + s) - f(s)]  
< < N O~x=2 0=<x~<2" 

and the oscillation 

oJ,(s) = m,(s )  - m,(s) = max [f(x + s) - f ( y  + s)l, 
O<x,y~2" 

I f  7~ -- infs>o ~o,i(s), the average oscillation constant is defined by 

~,f = lirq ~'"y 
? 1 ~ O 0  n 

LEMMA 1.5. For each n E N  it holds that 

( 8) ( n - 2 )  2 n < ' I . < 2 n + 4 n "  1 + 2 s e n  4 = -- 
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Therefore the average oscillation constant )'I satisfies 

0 < l ( l + 2 s i n 8 ) < Y i < 2 .  

PROOF. As the func t ionfsa t i s f ies  ([4] p. 237) 

I f ( s + t ) - f ( s ) l ~ 2 1 o g + l t l + 4 n  f o r t ~ O ,  s E R ,  

we get that to~(s) < 2n + 4n. Thus yy < 2. 

Now fix n ~ N  and s > 0; let us suppose that Zg£~ cos(ns/2 k) < O. Taking 

x ~ [0, 2" ] such that x + s ----- 0 (mod 2 ~) we have 

. - I  

f ( x  + s ) -  f (s)  <-_ - E 
k = l  

n(x + s) ~ / ns n(x_+ s)] 
cos ?; +k n COSiZ--cos 2k J 

. -1 n(x  + s) 
_-<- Y, cos + 2 n = - n + l + 2 n .  

k-I 2 k 

I f  we assume that Zp,£~ COS(TtS]2 k) > O, we get 

( ,)  

, -1  n (x  + 
f ( x  + s) - f (s )  > - ~ cos - -  

k=l  2 k 

_~ / . s  ~(x_+s)]  
s) + a ~ . ~ c ° s 2  - ~ - c ° s  2 k ] 

_ , - i  n (x  + s) 
Y, c o s -  2n. 

k=l  2 k 

With an x ~ [ 0 ,  2"] such that x + s ~ ( 1  + 4 + • • • + 4") (mod 2") we obtain 

that 

cos 22 k = c o s n  1 + ~ + . . . +  < c o s n  1 +  = 

for 1 < 2k < n, and 

COS - -  22k+~ COS~ 1 + ~ + ' ' ' +  __--<COS 1 +  = - - s i n  

for 1 < 2k + 1 < n. Thus, from ( ,)  we deduce 

( f ( x  + s) - f ( x )  > 1 + 2 sin ~ / \ - ~ / -  2n. 

Finally, in both cases 
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cot(s)= Mn(s)-mn(s)=> (1 + 2 s i n  n-I(n8/\ -4 21/-27r, 

which implies the result, q.e.d. 

THEOREM 1.6. l f  p > 1 and q ÷ 0 satisfy 

p rs ( + )  - - <  
I q I 2 log 2 '  

then the Orlicz sequence space IF- does not contain any complemented copy 

of l  v. 

PROOF. Let us prove that the function t v is a-strongly non-equivalent to 

EF,~ for some a > 0 and F=Fp,q. For each n E N  put re(n) = 2 ~ and assume 

the existence of an integer k verifying 

e - ~  < __F(zkri) < e~ 

- F(rk)zp; 

for r = e -l,  i = 1, 2 . . . .  ,2 ~ and 0 > 0. This implies that 

(,) - On < q( f (k  + i) - f(k)) < On. 

Now, remembering that the function fsatisfies If(x + h ) -  f(x)l  _-< ~r for 
x > 0 and 0 < h < 1, we easily get the existence of  integers i, j with 1 < i, 

j =< 2 n such that 

and 

Hence 

This implies that f ( k  + i) - f (k )  > ½(?~ - 2n) 

- ½(~,./- 2n), and from (,) we obtain that 

and 

f ( k  + i) - f (k )  >= M,,(k) - n 

f ( k  + j )  - f (k )  <= m~(k) + ft. 

f ( k  + i) - f ( k  + j )  >= M, , (k )  - m, , (k)  - 2n  ~ ~ - 2ft.  

or f ( k  + j )  - f (k )  < 

- 

0 > I q I for each n ~ N, 
2n 

O > l q l  
2"  
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Thus, it results that for 0 < g < b q 17:/2 and a big enough natural number  n, 
for any k E N  there exists an integer i with 1 < i < 2" = re(n), such that 

F(zkzi) e6.]. 
F(.ck)z pi q~ [ e -6~, 

Furthermore, by ( + ) we can take ~ satisfying 
2 log 2 < log 2 1 

Iq l~,: ~ p 
and 

Therefore 

a---- + e <  for some e > 0. 

m. = re(n) = o(e"6"). 

This means that t v is a-strongly non-equivalent to Ee,1, and with an appeal to 
Proposition 1.3, we conclude the proof, q.e.d. 

As an easy consequence we obtain a result of  Lindenstrauss and Tzafriri 
([9], [10] p. 163) proved by using the method of constructing Orlicz functions 
associated with 0-1 valued sequences: 

COROLLARY 1.7. For any p > 1 there exists a minimal  reflexive Orlicz 
sequence space l F with indices aF =f ir  = P  which does not have any com- 
plemented copy o f  Iv. 

PROOF. Just take q -- (4p log 2)/~,:and apply Theorem 1.6. 

COROLLARY 1.8. I f  l < p ÷ 2 and q 4 0 satisfy 

P_A_< 7: 

[q I 2 log 2 '  

then the Orlicz function space Lt% does not contain any complemented copy 

of P. 

PROOF. If  follows from Proposition 8 in ([3]) and Theorem 1.6. 

REMARK. An open question is to determine values p ~ 2 and q such that 
the Orlicz space LF,~ contains a complemented copy of  l p. Any positive result 
in this direction would automatically imply that Problem 4.b.8 in ([ 10]) has a 
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negative solution, i.e. the existence of minimal Orlicz sequence spaces which 
are not prime. 

II. Sequence spaces containing singular lP-complemented copies 

In ([6] p. 276) N. Kalton proved the existence of Orlicz sequence spaces l e, 
with different indices a r  ~f l r ,  containing /P-complemented copies (p  > ]) 
such that the function t p is not equivalent to any function in the set Er, i. This 
means, in other words, that the complemented subspaces isomorphic to I p in l r  
can never be the span of any block basis with constant coefficients of the unit  
vector basis of U.  (We shall often say, in short, that the space l r has a singular 

I p- complemented copy.) 
The first result in this section extends Kalton's example to the case of  Orlicz 

sequence spaces with the same indices: 

THEOREM 2.1. Let  p > 1. There exists an Orlicz sequence space l r, with 
indices ar  = fir = P, containing a complemented subspace isomorphic to I p but 
t p is not equivalent at 0 to any funct ion in Er.l. 

PROOF. Let us define a sequence of positive functions (f~)F on [0, oo) 
in the following way: For each n EN,  f~ is the function of period P. = 222. 
such that 

{ 0  i ifO--< t --<P" - 4 " 2 " ;  

L(t) = (1 - COS(rrt/2k)), i f / ' .  -- 4-2" < t < P. .  
k z l  

We consider also the sequence of periodic functions (g.)~o defined in 
([6], p. 275) by 

If 
' i f O < t  _-<P. - 4 .2" ,  

g . ( t ) =  ( t - P . ) + 2 - 2 " ,  i f P . - 4 . Z " < t < P . - 2 . 2  ", 

1½(P. - t), i fP .  - 2 .2"  < t _-< P. ,  

and the functions 

f ( t )  = sup f~(t) and g(t)  -- sup g.(t).  
hEN  n ~ N  

I fg ( t )  ÷ 0 let n(t)  be the biggest integer n for which g.( t )  = g(t). Noticing 

that f~(t) <fro(t)  implies g,( t )  < gin(t), it is easy to check that f ( t )  = f~tt)(t). 



Vol. 68, 1989 l v-COMPLEMENTED COPIES 39 

We define now the function 

F(t) = t p exp{qf( - log t)} for 0 < t < 1 

with 0 < q  < ( p -  1)/31t. It is straightforward to show that  F is a convex 

function. 

Let us prove that  t p is not  equivalent to any function in EF,~. Suppose that  

this is not the case, i.e. there exists FEEF.~ with F ,~ t p at 0. Thus for some 

sequence (Sk) /" oo, 

F(e-S~t) 
F( t ) - -  lim - -  

k-~ F(e-'k) 
t'exp{q(limOr(Sk--logt)--f(Sk))}\k--oo 

= t P e q ~ - l o g  t) 

for t E [0, 1], and where f m e a n s  the function 

f (x)  = l im ( f ( x  + Sk) -- f(Sk)). 
k~oo 

Let g(x  + sk) @ 0 and n(x  + sk)= nk(X)~  nk > 1; there are two points t~ 

and t'~ with t;~ _-< x _-< t';, satisfying t'~ - t~ = 4 .2" ,  and n(t + Sk) = nk for every 

t~ < t < t"k. Let us denote by ( t ' ,  t " ) E R  × R ( I ~ R  U { + oo}) an accumu- 

lation point of  the sequence {(tL t'~)} C R 2. Thus - oo _-< t" _-< x _-< t"x _-< oo 

and t';, - t ~  = 4 .2  mtx~ for some integer m ( x ) E N  U {oo}. We still denote by 

(t;~, t';,) the subsequence converging to (ix', t " )  in R × R. Furthermore we can 

assume that t;, is finite or t';, = + oo. Indeed, i f  t" = - oo and t "  < oo we could 

take x '  > t"x getting that  t ' ,  > t "  , hence t', would be finite. 

Let us now distinguish the cases m(x)~-rn  finite or infinite. I f  m = + o% 

then m(t)  = oo for t" =< t < oo. Arguing as in the proof  of  Theorem 1.2 we 

obtain a scalar sequence (ai) such that  0=<ai _-<2 ~+= and limk--ooSk =ag 
(mod 2 ~+ ~). Thus, by Weierstrass criterion, for t _>- t" 

[,< ,<,,( .<,,, 
l im t+Sk)--)'] 1--COS = l i r a  [ - - cos  k--o~ i-I 2i/ j  k-°° i - ,  ~COS'~ - 

= / , . . ,  
~-~ ~ cos ~ - cos 2 g . 

Hence, there exists 
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lim f (sk ) -  1 - cos-~i-)J 
k~oo .= 

"~(') ( n sA l  
= k--~olim \(f(Sk) - -  f ( t  + Sk)  ~- f ( t  + Sk)  - -  i : 1  y' 1 - cos -~-]J 

_ ~, [ nai n(t + ai!) _ f ( t ) =  C, 
- -  i = '  tCOS -~- - cos 27 

where C is a constant (not depending on t). Therefore, the expression 

f ( t )  = ~ [ ha, n(t  + a,)) _ C 
i - I  tCOS - ~ -  - -  COS 2 i 

results for t >_- t ' ,  so the function f i s  not bounded. 

Let us see now that also in the case of m ( x ) = m  finite, the function f i s  

unbounded. From the uniform convergence on compact subsets and from the 

existence of  limk-~o f(Sk) = C', we obtain 

f(t) = lim [f( t  + Sk) - -  f ( S k )  ] = 1 - -  COS 2 i  
k - - o o  i - 1  

for every t; __< t < " = t x. Then, as in Lemma 1.5, the oscillation o f f  in the interval 
[t'~, t"]  of large 4 .2  re(x) is bigger than or equal to Corn(x) for a constant Co > 0. 

Hence, f bounded implies rn (x) is bounded. If 

g(t)  = lim [g(t + Sk) -- g(Sk)], 
k ~ o o  

since 

0 < g(t  + Sk) = g,(t+s~)(t + Sk) < 2 "~'+s~)--" 2 mm 

for k --- ~ ,  we have that (g(Sk))~ is a bounded sequence, and so the function g 

is bounded. This is a contradiction, because if G(t) = t 2 exp[g( - log t)], by 

Kalton ([6] p. 277), there is no function 

G(t) = t~e g(-]°gt) 

in E~.~ equivalent to t 2 at 0. 

In both cases we conclude that f i s  unbounded, so the function t" is not 

equivalent to any function F(t)  = t p exp{qf( - log t)} in Ee,~. 
To prove that l e contains a complemented copy of  l p we show that the 

inclusion map from l ~- into l p is not a strictly singular operator and we apply 
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Theorem 5.4 of [6]. It is clear that the inclusion map J :  l e---- l p is hounded. 
To show that J is not strictly singular, we use the analytic criterion given in 
([6] Thin. 5.3). Put e~ = e -e,, n ~ N .  Then 

1 £ ' F ( t )  l £ ' e  ¢/~-'°'t, l L e ,  
= - -  - -  dt = - -  eqt~u)du. 

log(~/e~) . t-777dt P~ , t P~ 

Notice that, for tE[0,  Pn],f(t) = max{f( t )  : 1 < i < n}. Hence, by using the 
definition o f f  

I L e "  1Le ' (eqj tu)_  - -  eq~u)du = 1 + -  1)du 
Pn 

1 ~ f e ,  
= ~= (e qfAu) -- 1)du 
< l + e n n i  l d 0  

1 - 1 ) d u  f P~ ( eqf~(u) 
= 1 + ~ ,  0 

i ~ l  ,o 

--<1+ ~, 1 ( f / ,  eqf,(u,du) 
- -  i=l  ~ i -4"2i 

< 1 + ~ leEqi4.2i  
i=l  r i 

=< 1 + 4 2-2~e2q~2~ < ~ 
~=~ 

for every integer n, and this proves that J is not strictly singular. 
Finally, it remains to show that ae = fie = P- Since 

F(2t) = eq[f(_losat)_ jl_los2)] ' 
F(2)t p 

we need to prove that for every e > 0 there is a constant K, > 0 such that 

I f ( x + t ) - f ( x ) l  < e t + K ,  for t >__0. 

For this let us show the inequality 

I f ( x + t ) - f ( x ) l  _-< 21og2 t + B  f o r t >  1 

with B = n + 2. 
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Firstly suppose that in (x, x + t) there is no zero o f f .  Then for a natural 

number m there holds 

f ( x  + t) = 1 - cos and f (x )  = 1 - cos . 
k - I  2k  k 1 

Hence, 

cos  - c o s  t )  I f ( x  + t ) -  f x)l <= _ 
k~l 2 k 

and for 2 "-1 _-< t < 2" we get that 

cos = o I f ( x + t ) - f ( x ) l  _-_2n+ ~-£ - cos < 2 n +  
k = n + l  2 k "~- k = n + l  

___< 2(log2 t + 1) + n = 2 log2 t + B. 

Suppose now that the interval (x, x + t) contains zeros of  the function f ,  and 

let Xo and Xl be the first and the last zeros, respectively. Then, by above 

inequality we have 

f ( x + t ) - - I f ( x + t ) - f ( x , ) l  =<210g2t + B  

and 

f (x )  = If(x0) - f(x)l  =< 2 log2 t + B. 

Hence, as f >= 0, we conclude that 

If(x + t) - f(x) l  =< 2 log2 t + B. q.e.d. 

REMARK 1. The complementary function P of  the above function F 

verifies also that the Orlicz sequence space l ~ contains a singular It-com- 

plemented copy (1/r + l /p  = 1). This follows from ([10] Thin. 4.b.3). 

REMARK 2. In the case of  p = 1 the above theorem does not hold: Every 

Orlicz sequence space l F with aF = 1 contains a complemented subspace 

isomorphic to I t generated by a block basis with constant coefficients of  the 

unit vector basis of /F(cf .  [7] Thin. 4.2 or [2] Prop. 10). 

We use Theorem 2.1 to study the "inverse problem" for singular l p- 
complemented copies: given an arbitrary set H of real numbers p > 1, find an 

Orlicz sequence space le containing only singular l ~- complemented copies and 

such that the set of  values p for which I p is isomorphic to a complemented 

subspace of  1F is exactly the set H.  
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THEOREM 2.2. Let  H be a closed set o f  positive numbers with 1 < a =  

i n f H  < sup H = / / <  ~ .  Then there exists an Orlicz sequence space l F with 

indices Ot F = a and flF = fl which contains complemented subspaces isomorphic 

to I p i f  and only i f  p ~ H .  Furthermore, for each p ~ H ,  t p is not equivalent to 

any function in EF,~. 

PROOF. First, we pick up a dense sequence (p . )~  in the set H,  so that every 

element of  the range of  (p , )  appears infinitely many times in the sequence. 

Fix 0 < q  < ( a -  1)/3n; we consider the function defined in the above 

theorem, 
Fp(t) = tPe qa-~°st), for 0 < t < 1, 

which satisfies aF, = flFp = P, l F" contains a/P-complemented copy, and t p is 

not equivalent to any function in EF,,,. 

Define a continuous function F o n  [0, l] by F(0) = 0, F(1) = 1 and 

for r. + ~ <= x <= r., 

where r. = e-"2. This function F is not necessarily convex, but as F ( x ) / x  is an 

increasing function, we get that F is equivalent to a convex function at 0. 

Since 

F(r . x )  !". + l 
- -  = Fp.(x) for 1 >= x ->__ 
F(r, )  r. 

and r, + i/r. --" 0 if n ~ oo, we get that Fp.EEF, I for all n ~ N ,  and hence 

Fp ~ EF,1 for each p ~ H.  Now, by ([ 10] p. 150), l e has a complemented copy of  

IF,, so, recalling Theorem 2.1, we deduce that l F has a/P-complemented copy 

for each p E H.  

Let us see that t p is not equivalent to any function in Ee,,. Assuming the 

opposite there exists a function G ~EF,  which is equivalent to t ~ at 0. Thus for 

a sequence (Sk) /" oO we have 

F(e-Skx) 
G(x)  = lim - -  

k+~+ F(e-+k) 

uniformly on [0, 1]. Fix 0 < x  < 1; let (nk) be an integer sequence satisfying 

rn k ---- e -n2* ~ e-S~x >---- e -(nk+l)2 = rn,+l. 

Hence 
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(n~ - Sk) < log 1 =< (nk + 1) 2 -- Sk. 
X 

Let ( t ' , t ' ~ , ) E R × R  be an accumulat ion point  o f  the sequence 

{(nk 2 -- Sk, (nk + 1) 2 -- Sk)}~-~ C R 2, SO t'~, - t" = oc. Moreover  we can assume, 

w.l.o.g., that t "  = oc. Indeed, ift '~ < ~ we can take 0 < x '  < xwi th  log(1/x') > 

t"~, getting t'~ < t~'.< 0% and hence t'~, = ~ .  

Taking a sufficiently small scalar to with log(1/to) > g,, and by passing to a 

subsequence if  necessary, we get, for 0 < t < to, 

SO 

r,, > e-S~t > --__ = r n k + l ,  

F(e-S~t ) = (-~.~ )e-S~t p,~ F(rnk)eql~s,-n~-logt). 

At this stage, we continue in a similar way as in the above theorem. Thus, by 

passing to a subsequence if necessary, there exist a Po ~ H and a constant K > 0 

such that 

G(t)  = KtP° exp ~q l im [f(Sk -- n 2 - - log  t ) -  f(Sk - n2)]~ 
t J 

for 0 < t < to. Therefore,  the function G is equivalent  at 0 to a f u n c t i o n  OfEFp0,1 

but  this is impossible because G is equivalent  to t o and from Theorem 2.1 we 

know that tPq~Er,,~ for any p > 1. 

Now we show that t p is strongly non-equivalent  to Ee,~ for each p 6 H ,  

which implies, by ([10] Theorem 4.b.5), that l F does not contain any com- 

plemented subspace isomorphic to I p. Fix p q~H; let e > 0  be such that 

( p  - 3~, p + 3e) N H = ~ .  For  each n ~ N ,  put  m ( n )  - -  n 2 and assume the 

existence of  an integer k so that 

F ( r k r  ~) 
( , )  e - ' ~  <-- ~ < e ~ 

- -  F ( T k ) T i p  

for i = 1, 2 , . . . ,  n 2 and r = e -~. Let 1 < j  < n 2 - n (n > 1); by the above 

inequali ty with i = j and i = j + n, 

F(zk+J +") 
(**) e -  2en'~ °n < < e2enz pn 

F(Z k+j) 

for 1 _-<j =< (n 2 - n). 
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Depending on the possible values of  k, we consider a particular value o f j  as 

follows: 
(a) j = (n - 1) 2 - k when k < (n - 1) 2, 

(b) j = 1 when (m - 1) 5 < k < (k + .n )  < m 2 for an integer m >_- n, 

(c) j = m 2 - k when (m - 1) 2 < k < m 2 < k + n for an integer m > n. 

It is easy to check that  in every case 

F("¢k+j+n) = TP, neqCf(o+n)-fto)) 
F ( r  k+j) 

for some p, E H  and 0 < a < k + j .  By the inequality (**), 

F(rk+J +") 

F(zk+J)ZP" 
~ [ e  - " ,  e " ]  

for n big enough (n >_- no). Indeed, assuming the opposite, i f  no denotes an 

integer such that  

q .  (2 log2 n + B) < en 

for n > no and B = n + 2, and making use of  the inequality given in Theorem 

2.1 

I f ( a  + n )  - f ( a )  l = 2 log2 n + B 

for o" > 0, we easily find that  [Pr -- P [ < 2t ,  which is not possible. 

Thus, we have arrived at a contradict ion with (.)  and so we conclude that  for 

any integer n > no there exist r e ( n )  = n 2 points in (0, 1) such that  for any 

integer k there exists at least one index i -- 1, 2 , . . . ,  n 2 for which 

F ( z k z  ') 
- -  qi [e  - ~ ,  e~"]. 
F(zk)z p, 

As m ( n  + 1) -- o(e °~) for any o > 0, and by the As-condition, t p is strongly 

non-equivalent to Er,~. 

Finally, it remains to show that  aF = a and flF ---- ft. Let  p = a -- t with e > 0; 

for r. > 2 > 2t > r. + ~ we have 

F(2t)  
= t P . - ° e x p { q [ f (  - log(2t) + n 2) - f (  - log2 + n2)]} 

F(A)tP 

t ~ exp{q[2 log2( - log t) + B]} 
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for p, E H. Then there exists a constant K > 0 and a sufficiently small scalar 

to < 1 such that 

In the general case, as 

F(2t)  

F(2)t  p 

and 

F(2t) 

F(2)t  p 
- - < 1  i f 0 < t  < to  

F(2t) 

F(2)t p 
- - < K  i f t 0 < t  < 1. 

F(Xt) F(r , )  F(r ,_k )  

', ( r. 
\ r n /  x r n  _ i / 

for r, +1 < 2t < r, < • • • < r, _~ < ;t < r, -k-  1, we obtain that 

F(2t) < Kmo+ 2 
F(2)t  p 

for every 0 < t, 2 < 1, where m0 is the number of  integers m satisfying 

(rm/rm-l) >= to. Hence p < at: for any p < a ,  so a < aF and, as U ~ l %  we 

conclude that at: = a. 

The proof of  the remaining equality fie = fl is similar, q.e.d. 

In the general case of  arbitrary closed sets H the "inverse problem" for 

s ingular /P-complemented copies has also a positive solution: 

THEOREM 2.3. Let  1 < a  <=fl < oo and  H be an arbitrary closed subset oJ 

the interval [or, fl]. Then there exists an Orlicz sequence space l F with indices 

ar  = a and fir = fl, which contains a complemented copy o f  l p i f  and only iJ 

p E H .  Furthermore t p is not equivalent to any function in EF,~ for  any p > 1. 

PROOF. We proceed in a similar way as in the proof of  Theorem 2 of([3]), 

which makes use of  the method of  constructing Orlicz functions Fp associated 

with sequences of  0's and l 's  given in ([9], [10] p. 161). Thus we shall only give 

a sketch of  the proof. 

We can assume that H ~ ~ and let ( P2n- l)~- 1 be a dense sequence in the set 

H,  so that every element of  the range of  the sequence appears infinitely many 

times. Fixed 0 < q < (a - 1)/3n, we consider the Orlicz functions 

Fp.(t) = t p, exp{qf( - log t)} 
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for n odd and where f i s  the function defined in Theorem 2.1. 

Let (m.) be the integer sequence considered in Theorem 2 of  ([3]) to 

construct the sequence p = (p(n))~ of O's and l's, and let F, denote its 

associated Odicz function with indices a = a r  and fl = fie. Define the con- 

tinuous function For t  [0, 1] as follows: F(0) = 0, F(1) = 1, and 

F ( t ) =  l Fp(~")F(r") ifr"+'<=t<=r"andneven 

where r, = e -m, for n ~ N .  

This function F is equivalent at 0 to a convex function (f.i. Fo(x)= 
I~(F(t)/t)dt), since F(t)lt is an increasing function. 

In the same way as in Theorem 2.2, by considering the sequence 

(F(Gx)IF(r~)) for n odd, we get that the function Fp belongs to EF for each 

p ~ H .  Thus, using ([10] p. 150) and Theorem 2.1 we deduce that the Orlicz 

sequence space l F has a complemented copy of  I p for each p E / / .  

Let us see that t p is not equivalent to any functions in EF,~. Suppose the 

opposite, so there exists a function G ~EF which is equivalent to t p at 0, and a 

scalar sequence (Sk)~ ~ 0 such that 

F(Skt) G(t) = lira - -  
k--~ F(Sk) 

uniformly in [0, 1 ]. Now, reasoning as in Theorem 2.2, there exist to > 0 such 

that for 0 < t < to we have (passing to a subsequence if necessary) 

skt (skt]F(r~) 

G(t) = lim or G(t)= lim 
~-~ F(sk) k-~ F(sk) 

for a subsequence (p/,) of  the sequence (p.).  Thus i fp  E H is an accumulation 

point of  the sequence (pl) ,  we have 

E {sk,  v \'~k} F, (~)F(r~) 
G(t) = lira ~ lim 
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o r  

F [Skt~ Fpi (~,1 F(r~) 
P \ r~ ] \r'k/ 

G(t) = lim ~ lim 
k--oo F, (S-~) k-m F(Sk) 

This implies that t p is equivalent at 0 to a function of EF,,1 or Er,,~, which is a 

contradiction. 
Finally, following the method developed in ([3] Theorem 2) and the tricks of 

Theorem 2.1, it can be shown that for each p ~ H the function t p is strongly 
non-equivalent to EF,~ and that the associated indices satisfy aF = a and 
fie = ft. Hence I e does not contain any complemented subspace isomorphic to 
I p for p ~ H .  q.e.d. 

III. Function spaces containing singular/P-complemented copies 

We start this section introducing the following 

DEFINITION. Given a Banach lattice X and a Banach space Y, an operator 
T:  X - -  Y is said to be disjoin@ singular if there is no disjoint sequence of 
non-null vectors (u,) in X such that the restriction of the operator T to the 
subspace [u,] spanned by the vectors (u~) is an isomorphism. ("Disjoint 
sequence" means that l un I ^ lure I = 0 for n ÷ m.) 

Recall that an operator T:  X--- Y is strictly singular if it fails to be an 
isomorphism on any infinite-dimensional subspace. Clearly every strictly 
singular operator is a disjointly singular operator. However the converse is not 
true as the following easy example shows: 

Let us consider the canonic inclusion map J :  Lq(0, 1)---LP(0, l) for I -_< 
p < q. This operator J is not strictly singular, since its restriction to the 

subspace [rn]q spanned by the Rademacher functions (rn) in Lq(0, 1) is an 
isomorphism ([r,]q ~ [J(rn)]p ~ 12). However, the operator J is disjointly 
singular because for any sequene of non-null functions (f~) in Lq(0, 1) with 

pairwise disjoint support, we have that 

,~[ f n ] ~ l q  and [ J ( f~ ) ] ,~  ~ ~ 1 '  
k U J, 

(of. [5] Lemma 1). 
For operators defined on separable Orlicz sequence spaces it is true that to 



Vol. 68, 1 9 8 9  Ip-COMPLEMENTED COPIES 49 

be disjointly singular is the same as to be strictly singular. This follows directly 
from a basic result on bases (cf. [10], Prop. 1.a.11). 

We study now when the inclusion m a p J : L r ( 0 ,  l ) ~ L a ( 0 ,  1) between 
separable Orlicz function spaces is a disjointly singular operator. (Note that 
the inclusion operator J cannot be strictly singular ever.) We wish to find an 
analytic criterion for the inclusion map J :  Lf(0, 1) ~ LP(0, 1) to be disjointly 
singular. We will use basically the method used in [6] for the strict singularity 
in Orlicz sequence spaces. 

Let F and G be Orlicz functions verifying the A:-condition at oo and 
Lr(O, 1 ) ~ L  F C LC(0, 1 ) ~ L  c. Thus, the function 

G(t) 
W(t) = ~ for t >_- 1 

F(t) 

is bounded on I~ = [1, + ~) .  Let us denote by W(t) its unique extension to the 
Stone-~ech compactification flI~ of I~. Similarly we shall denote by F, (x) the 
extension to flI~ of  the functions F~ defined by F~(x) = F(zx)/F(z),  for r ~I~ .  

THEOREM 3.1. Suppose L F c L ~. Then the inclusion map J: L v ~ L G is 

not a disjointly singular operator i f  and only i f  there exists a constant C > 0 and 

a probability measure Iz on ill® such that lt(I~) = 0 and 

f <__ c f W(z)G~(x)d/a(r) 

for O < x < l. 

PROOF. Assume that the map J is not disjointly singular. So there exists a 
basic sequence of functions (u,) of norm one in L e with mutually disjoint 
supports such that the restriction of J to the subspace [u,] is an isomorphism. 
Reasoning as in Proposition 4.3 of ([9]) and passing to a subsequence, if 
necessary, we get two functions H~ ~ Cp and H 2 E C~ verifying that 

I lxu, IF--H~(x)I ~ 1/2" and I lxu, lc -H2(x ) l  < 1/2" 

for every 0 < x < 1 and n ~ N. 

Thus the series Y~ 2, u, converges in L F if and only if Z Ha(I A, I) < ~ ,  and in 

L ~ if and only ifZ//2(12,  I ) < ~ .  Hence, HI and/-/2 are equivalent functions at 
0. So we have Hi(x) < CH2(x) for 0 < x < 1 and a constant C > 0. 

Now, as we can assume that the functions (u.) are simple with 

i n f { l u , ( t ) l : t ~ s u p p u , } ~  for n - - ~ ,  
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there exists a probability measure #. with support in Io~ such that 

IXU. Ir=f.1= f~(x)d#.(z) (0 < x  -< 1) 

and 

Then, it results that 

Ixu. Ic = f pl. 

H~(x)= fpi F,(x)dkt(z) and H2(x)= fpl~ W(r)G,(x)d#(z) 

for p a probability measure, which is a weak* accumulation point of  the 

sequence (p,), so #(I~) = 0. Thus the proof of the necessity implication is 
finished. 

Let us see the sufficiency implication. We can suppose w.l.o.g, that F(s) > 
G(s) for every s > 0, so we assume that there exists a probability measure # on 

flIo~ with p(l®) = 0 verifying that 

(*) f W(z)G~(x)dp(r) <= f F~(x)dp(r) < C f W(z)G~(x)d~(Q 

for O__<x =< 1. 
? ? I n  ~ , For each n E N  there exists a probability measure p. = Z._, a .~ , . ,  on Io~ 

with t.,, E[n ,  + ~ )  such that 

and 

f F.(x)d/u(~)- f F.(x)d~.(r) <-_ 21 

for 0 _-< x _-< I. Thus. for 0 < 2. < 1. using (,) we obtain 

f F(tl2"l) dl~.(t)= ~ f 
? I l l  ~ ~g'('-'~ . ~1 

converges if and only if 

F,(12. I )d/z.(t) 

.-i G(t) .-~ .~ 
conve rges .  
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Since suppIt. C [n, + oo), we can assume, by passing to a subsequence, if 
necessary, that 

.ffil "= ) ,=l F(t)  

Let (A,.,) be a sequence of pairwise disjoint intervals in [0, 1] with length 
ft(An,i) = an,i/F(tn,3. Then, with the functions u. = E"",= l t,,~L~.,,, we get 

f ~ d i t  m n F(Xtni ) m f O  I F(t)  . ( t)  = Y. ~ '  a.,, = Y. F(xt . , i ) f t (A. , i)= F(xu . )d t  
i=l F(t.,i) i=l 

and, similarly, for the function G, i.e. 

G ( x t )  i 
f w ( t ) - G - ~ d i t . ( t ) =  L G(xu,)dt .  

Thus, the series Z 2, u. converges in L F if and only if it converges in L °. Hence, 
the restriction of the inclusion map J to the subspace [u. ] is an isomorphism, 
and so the inclusion map J" L F ~ L ~ is not a disjointly singular operator. 

q.e.d. 

Reasoning in a similar way as in ([6] Theorem 5.2) there results: 

PROPOSITION 3.2. Suppose L F  c L a. The following conditions are equi- 

valent: 
(a) The inclusion map J" L F ---, L G is disjointly singular. 

(b For any C > O, there exist distinct points Xl, x2, • • •, x .  E Ioo and 
el . . . . .  c. > 0 such that 

c f ( t x 3  > C ciG(tx3 (t > 1). 
i= l  i=l  

(c) For any C > 0 there exists a > 1 and a positive Borel measure It with 
support contained in [ 1, a] such that 

fF(tx)dIt(x)>-_CfG(tx)dIt(x) (t->_ 1). 

PROPOSITION 3.3. Suppose L F C L p (p  > 1). Then the inclusion map 

J:  L F ~ L p is disjoin@ singular i f  and only i f  

( + ) lim inf 1 [ -a  F(su_______~) du = oo. 
a - ~ s > l l o g a  d l  sPu p+I 
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PROOF. 

So 

From ( + ) it follows that  for any C > 0 there exists a > 1 such that  

r a ~ F ( s u )  du > C log a = C (s > 1). 
s P u  p+'  = d 1 U 

f °  du > C du 
F(su____) r o (su )___E 
U p+I = Jl U p+I ' 

and, by Proposit ion 3.2(c), we get that  J is disjointly singular. 

Suppose now that  J :  L e ~ L p is disjointly singular. Then, by Proposit ion 

3.2, for any C > 0 there exists 1 < xl < • • • < x ,  and q, c2, . . . ,  G > 0 such 

that  

Y. c,F(stxJ > C ci(tsxi) p (1 < s, t). 
i=1 i - 1  

For a > 2 ~ X n ,  

and 

F(stx~) r ~ . dt 
r S  ~, c, dt> C ~_ cis 'xf  t 

= C ( ~ c i s ' x e ' )  \ i - ,  

f ,  F(stx~) 
x/~ ~ Ci t p+! 

i - 1  

n f" F(su). 
dt = Y~ c, x f  | du 

i--I ox i  U p+I 

( ~ ~ r a F(Su) < c xe du. 

Then, for any C > 0 there exists x,  > 1 such that, for any a > x 2, 

1 f l  a_F(su) du = -  > C 
l oga  sPu p+~ 2 

for s >_- 1. q.e.d. 

COROLLARY 3.4. Suppose L e C L e (p > 1) and L F has not a com- 
plemented subspace generated by a sequence of  non-null functions with pairwise 
disjoint support that is isomorphic to I p. Then the condition ( + ) is satisfied. 

PROOF. I f (  + ) is not satisfied, the inclusion map J"  L v --- L e is an isomor- 
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phism on some infinite-dimensional closed subspace X generated by a norma- 
lized sequence of functions (u.) with pairwise disjoint support. Now, by ([5] 
Theorem 2), the span of the functions u,/[I u. [[p--f., n E N ,  in L p is a 
complemented subspace isomorphic to l p with projection P:  L p - * J ( X ) =  

[f.]p defined by 

n - - I  

where A, = s u p p f ,  and (g,) is an orthonormal sequence to (f,) in L q 
( l l q  + 111) -- 1). Hence, considering the composition operator J - 1 p  j ,  we get a 
projection of L F onto X, which gives a contradiction, q.e.d. 

We apply now the above result to prove the existence of Orlicz function 
spaces L F containing s ingular  lP-com1)lemented copies, i.e. Orlicz function 
spaces L F having complemented subspaces isomorphic to I p but the function t p 

is not equivalent at 0 to any function in E ~ .  This is equivalent to saying that 
any complemented subspace isomorphic to I p in L F cannot be the span of any 
sequence of pairwise disjoint characteristic functions (Z~.) (cf. [2]). 

The next theorem gives the extension to function spaces of a result of Kalton 
([6] Example 2) and Theorem 2.1 stated in Orlicz sequence spaces: 

THEOR~-M 3.5. L e t  1) > 1. There .ex is ts  an Orlicz f unc t ion  space LF(O, 1), 
with indices a r  = t ip  = 1), con ta in ing  a c o m p l e m e n t e d  copy o f l  p such that  t p is 

not  equivalent  at  0 to any  func t ion  in E~I  . 

PROOF. Let F be the function 

F ( t )  = t p exp{qf(log t)} if t > 1, 

where 0 < q < (1) - 1)/31t and f is the function defined in Theorem 2.1. 
Let us see that t p is not equivalent to any function in E7,~. If FEEF,~ there 

exists a sequence (Sk) /" O0 such that 

F ( t )  = lim F(e'~t)  = t p l ime  q{f(sk +l°zt)-f(sk)} 
k--Qo F(e 'O k--® 

= tPeq]Oogt), 

for 0 < t < 1, and where the function fis defined by 

f(x) = lim [f(x + Sk) -- f(Sk)]. 
k - -  oo 
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As it was shown in Theorem 2.1 t h a t f  is not a bounded function, we get that 

F is not equivalent to t p at 0. 
We have L r C L p since l i m t ~  ( tUF( t ) )< ~ ,  and the inclusion map 

J :  L F ~ L p is not disjointly singular. Indeed, as 

f~F(U)duf~e q~°g') f l l  e qf(-l°g t) 
= - -  d u  = ~ dt, 

u /a t 

we deduce from Theorem 2.1 that 

fa  F(su) 
i n f - ! - I  d i sP--~ -CI du < ~ .  lim 

a--oo s > l  log a 

Thus, using Corollary 3.4, we conclude that the space L e contains a com- 

plemented copy of l p. 
Finally it can be shown as in Theorem 2.1 that a p  = fl? = p. q.e.d. 

REMARK. In the case p = 1 the above result does not hold: Every Orlicz 
function space LF(0, I) with a r  = 1 contains a complemented subspace 
isomorphic to l ~ generated by a sequence of pairwise disjoint characteristic 

functions (cf. [2] Proposition 10). 

Now the "inverse problem" for singular lP-complemented copies in function 
spaces L F is solved: 

THEOREM 3.6. Let 1 < a < fl < oo and H be an arbitrary closed subset oJ 
the interval [a, fl]. Then there exists an Orlicz function space LF(O, 1) with 

indices ap = a and fl~ = fl, which contains a complemented copy o f  l p i f  and 
only i f  p ~ H  U {2}. Furthermore, for each p E H  the function t p is not 

equivalent to any function in E~,I. 

The proof  is analogous to the one given in Theorem 2.3 for sequence spaces. 
We need to consider here the functions Fp defined in the above Theorem 3.5, 

Fp(t) = tPexp{qf( logt)} ,  i f t  >_- 1, 

and to use the method of  Theorem 7 in [31 (we omit  the details). 

REMARK. We do not know whether for every Orlicz function space 
LF(0, l) (resp. sequence space l F) the set of values p > 1 for which the space 
LF(0, 1) (resp. l p) contains a singular/P-complemented copy is always closed. 
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